1. Summer 2025 Reading
  2. 1. Analysis
  3. 2. Category Theory
  4. 3. Combinatorics
  5. 4. Probability & Statistics
  6. 5. Programming Languages
  7. 6. Computer Systems
  8. 7. Algorithms
  9. 8. Novels
  10. 9. Old
    1. 9.1. Texts on Inference and Learning
    2. 9.2. Monographs
      1. 9.2.1. Machine Learning
      2. 9.2.2. Systems
      3. 9.2.3. Programming
    3. 9.3. Papers
    4. 9.4. Conferences

reading-list

Awesome Machine Learning Monographs

...and book chapters

Neurosymbolic and Neurocausal Learning

  • Neuro-Causal Models (Aragam and Ravikumar 2024)
  • Causal Fairness Analysis - A Causal Toolkit for Fair Machine Learning (Plečko and Bareinboim 2024)
  • Neurosymbolic AI for Reasoning Over Knowledge Graphs: A Survey (DeLong et al. 2023)
  • Neurosymbolic Programming (Chaudhuri et al. 2021)

Conformal Prediction

  • Conformal Prediction: A Gentle Introduction (Angelopoulos et al. 2022)
  • A Tutorial on Conformal Prediction (Shafer and Vovk 2008)

Distributed Learning

  • Advances and Problems in Federated Learning (Kairouz et al. 2019)

Misc.

  • Foundation Models for Natural Language Processing (Paaß and Giesselbach 2023) -- technically a book but pick any chapter 🤪
  • An Introduction to Variational Autoencoders (Kingma and Welling 2019)
  • Algorithms for Reinforcement Learning (Szepesvàri 2009)
  • Learning Deep Architectures for AI (Bengio 2009)