- Wasserman chapters 1-5
- Probability Course
- ESL chapter 1, 5
- MacKay chapter 3
- Wasserman chapter 6, 8-10
- ESL chapter 2
- ESL chapter 3
- Wasserman chapter 13
- ESL chapter 4
- MacKay chapter 20-22
- ESL chapter 7
- MacKay chapter 28
- ESL chapters 9-10
- MacKay chapters 4-6, 8-17, 24
- Murphy chapter 4
- MacKay chapter 31
- Wasserman chapter 18
- MacKay chapter 37
- Wasserman chapter 17
- MacKay chapter 33
- MacKay chapter
s 29-30, 32
- Bishop-Bishop chapter 14
- MacKay chapter 43
- VAEs
- Bishop-Bishop chapters 17-18, 20
- Bishop-Bishop chapter 13
- Wasserman chapter 16
- Bayesian Epistemology
- Elements of Causal Inference chapters 1, 3-4
- Pearl chapters 7-11
- Wasserman: Larry Wasserman; All of Statistics
- Probability Course: H. Pishro-Nik; Introduction to probability, statistics, and random processes
- ESL: Trevor Hastie, Robert Tibshirani and Jerome Friedman; Elements of Statistical Learning
- MacKay: David J. C. MacKay; Information Theory, Inference, and Learning Algorithms
- PGM: Daphne Koller and Nir Friedman; Probabilistic Graphical Models: Principles and Techniques
- Bishop: Christopher M. Bishop; Pattern Recognition
- Bishop-Bishop: Christopher M. Bishop and Hugh Bishop; Deep Learning: Foundations and Concepts
- Murphy: Kevin Murphy; Machine Learning: Advanced Topics
- Blei et al.: David M. Blei, Alp Kucukelbir, Jon D. McAuliffe; Variational Inference: A Review for Statisticians
- VAEs: Diederik P. Kingma, Max Welling; An Introduction to Variational Autoencoders
- Bayesian Epistemology: https://plato.stanford.edu/entries/epistemology-bayesian/
- Pearl Judea Pearl; Causality
- Elements of Causal Inference: Peters, Janzing and Scholkopf; Elements of Causal Inference
- Wainwright-Jordan: Martin J. Wainwright and Michael I. Jordan; Graphical Models, Exponential Families, and
Variational Inference